GSI name: Roy Zhao

Linear Regression and Correlation

Concepts

1. We have

$$
a=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}(x-\bar{x})^{2}}, b=\bar{y}-a \bar{x},
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the average of the x values and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$ is the average of the y values.
The correlation coefficient of a set of points $\left\{\left(x_{i}, y_{i}\right)\right\}$ is given by

$$
r=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} .
$$

Another way to represent that the correlation coefficient is the cosine of the angle between the two vectors $\vec{x}=\left(x_{i}-\bar{x}\right)$ and $\vec{y}=\left(y_{i}-\bar{y}\right)$. So, we can write

$$
r=\frac{\vec{x} \circ \vec{y}}{|\vec{x}||\vec{y}|} .
$$

It is always between -1 and 1 by Cauchy-Schwarz.
Another way to write this is in terms of the sample covariance and sample standard deviation. They are defined as

$$
\operatorname{cov}(x, y)=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n}, \sigma_{x}=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}, \sigma_{y}=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n}} .
$$

Then another formula is

$$
r=\frac{\operatorname{cov}(x, y)}{\sigma_{x} \sigma_{y}}, a=r \frac{\sigma_{y}}{\sigma_{x}} .
$$

Examples

2. Suppose you want to know whether performance on Quiz 1 is correlated with performance on Quiz 13. You randomly choose 5 students' quiz scores and get the following values.

Student	Quiz 1	Quiz 13
A	7	9
B	12	11
C	6	5
D	11	10
E	4	5

Calculate the correlation coefficient r as well as the line of best fit.

Problems

3. True False The line of best fit always exists.
4. True False If you only have two data points with different x values, then the correlation coefficient r is either 1 or -1 .
5. True False The correlation is always between -1 and 1 inclusive.
6. True False If the correlation between two sets of data is -1 , then y is proportional to x^{-1}.
7. True False If we shift the data (by for instance adding 5 to all of the y values), then the correlation does not change.
8. True False For two random variables X, Y, we have $\operatorname{Cov}(10 X, 10 Y)=\operatorname{Cov}(X, Y)$.
9. Is there a relationship between the amount of antibody A and antibody B in a sick patient? You take antibody A and B counts per milliliter from 4 patients (in reality you will have a much, much larger sample size).

Patient	Antibody A	Antibody B
A	120	100
B	95	110
C	115	130
D	110	80

Calculate the correlation coefficient and line of best fit.
10. The formulas for the slope and y intercept of the line of best fit come from MLE. Suppose that error is normally distributed. This means that if we predict $y=a x_{i}+b$, then the probability of actually getting y_{i} follows the PDF

$$
\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(y_{i}-y\right)^{2} / 2 \sigma^{2}}=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\left(y_{i}-\left(a x_{i}+b\right)\right)^{2} / 2 \sigma^{2}} .
$$

Use MLE to show that $\hat{b}=\bar{y}-a \bar{x}$.
11. Now with $b=\bar{y}-a \bar{x}$, do MLE to show that $\hat{a}=r \frac{\sigma_{y}}{\sigma_{x}}$ the formula that we use for a.

